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Here we will elaborate on the efficiency of matrix pooling. The first stage of testing is sufficient for 

identifying the positive samples in the matrix as long as they are either all on the same row or all 

on the same column. This is the case, for example, if there is only one positive sample in the 

matrix. As will be shown below, the probability that no retesting will be needed is 2𝑛𝑞𝑛2−𝑛 −

(2𝑛 − 1)𝑞𝑛2
− 𝑛2𝑝𝑞𝑛2−1, where 𝑞 = 1 − 𝑝, and so for 𝑝 = 1% and 𝑛 = 5, less than 2% of the pools 

will require retesting. Thus, for 𝑝 = 1%, using a 5x5 matrix leads to an almost 2.5-fold increase in 

throughput (or 40% of tests), as most matrices require about 10 tests instead of 25, and an 8x8 

matrix gives already gives an efficiency of almost 4, at the price of an increased probability of 

retesting of around 11%. 

The above formula for the probability of no retesting can be derived as follows: denote by 𝐴 the 

event that at most 1 row tested positive and by 𝐵 the event that at most 1 column tested positive. 

These events have the same probability, which is 𝑞𝑛2
+ 𝑛𝑞𝑛2−𝑛(1 − 𝑞𝑛). The event of no retesting 

is the union of 𝐴 and 𝐵. It is easier to calculate the probability of their intersection which is exactly 

the event that there is at most one positive sample in the matrix, hence its probability is 𝑞𝑛2
+

 𝑛2𝑝𝑞𝑛2−1. The probability of the intersection of 𝐴 and 𝐵 is the sum of their probabilities minus the 

probability of their union, which gives the aforementioned formula. 

The efficiency of the matrix algorithm is: 

[
2

𝑛
+ (1 − 𝑞𝑛)(1 − 𝑞𝑛2−𝑛) − 𝑞𝑛(1 − 𝑞𝑛−1)(1 − 𝑞(𝑛−1)2

+ 𝑝𝑞𝑛2−2𝑛)]
−1

. 

A derivation of this formula appears in the next paragraph. Theoretically, for very low values of p, 

the optimal pool size 𝑛 is roughly 𝑝−
2

3, resulting in an efficiency of about 
1

3
𝑝−

2

3, which is 

asymptotically higher than Dorfman pooling (but asymptotically lower than the information bound, 

which is roughly 
1

𝑝(
1

𝑝
) 
 ). However, in practice, the pool size is limited to values which allow safely 

identifying a single positive sample in the pool. When keeping the pool size fixed, as the probability 

𝑝 becomes smaller, Dorfman pooling becomes about twice as efficient as matrix pooling, because 

it tests every sample in only one pool instead of two, and most pools test negative. 



A derivation for the efficiency of the matrix algorithm is as follows. The efficiency is the number of 

samples, n2, divided by the expected number of tests conducted on the matrix. The number of 

tests in the first stage is always 2𝑛. The expected number of tests in the second state is n2 times 

the probability that a fixed sample will need to be retested. We will calculate this probability for 

the sample lying the first row and first column. Denote by 𝑅𝑖  (resp. 𝐶𝑖) the events that the 𝑖th row 

(resp. 𝑖th column) tested positive. Let 𝑅 (resp. 𝐶) be the event that the first row (resp. column) and 

at least one more row (resp. column) tested positive. We wish to find the probability of the 

intersection of 𝑅 and 𝐶. Since 𝑅 is the event that there is a positive sample in both the first row 

and in the rest of the matrix, its probability is (1 − 𝑞𝑛)(1 − 𝑞𝑛2−𝑛). In order to compute the 

probability of 𝑅 ∩ 𝐶, it is enough to find the probability of the difference 𝑅\𝐶, which can be 

decomposed as the disjoint union of the events 𝐷1 and 𝐷2, where 𝐷1 = 𝑅\𝐶1 and 𝐷2 is the 

intersection of 𝑅 with the event that only the first column tested positive out of all columns. 𝐷1 is 

the event that the first column is negative but the first row and at least one more row is positive, 

hence its probability is 𝑞𝑛(1 − 𝑞𝑛−1)(1 − 𝑞(𝑛−1)2
). The probability of 𝐷2 can similarly be seen to 

be 𝑝(1 − 𝑞𝑛−1) ⋅ 𝑞𝑛2−𝑛. The probability of 𝑅\𝐶 is the sum of the probabilities of 𝐷1 and 𝐷2, and the 

probability of the intersection of 𝑅 and 𝐶 is the difference in probabilities of 𝑅 and 𝑅\𝐶. Multiplying 

by 𝑛2 gives us the expected number of retests needed, from which the matrix efficiency formula 

immediately follows.  

Many variants of the matrix pooling described above may be considered for the purpose of 

lowering the probability of a second testing stage. One such approach may be using d-disjunct 

testing matrices (see 1) as a first stage. This approach allows accurate (and efficient) identification 

of the positive samples from the test results if there are at most d positive samples. By 

comparison, the matrix algorithm described above will generally require a second stage when the 

matrix contains two positive samples. Another possible variant uses a d-dimensional matrix of 

side length n instead of the 2-dimensional matrix. In such a setting, at first stage, each generalized 

row is tested, totalling  𝑑𝑛𝑑−1 tests. For example, if 𝑑 = 3, we test each horizontal row, vertical 

row and depth row. A sample in the cube is suspected positive if all its generalized rows tested 

positive. If a sample suspected positive has the additional property that at least one of its 

generalized rows contains no other suspected positive sample, then we can deduce it is positive. 

If all suspected positive samples can be deduced positive this way, then no further testing is 

needed. Note that, in addition to a possible lower probability of retesting, d-dimensional matrix 

pooling offers a theoretically higher asymptotic efficiency of order 𝑝−
𝑑

𝑑+1 for very low a priori 

https://paperpile.com/c/XHUhEp/6YtR


probabilities. However, such efficiency is attained at an optimal pool size of the same order, i.e. 

roughly 𝑛 = 𝑝−
𝑑

𝑑+1, and so might not be practical for clinical purposes. 
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